Lower Bounds for Cubical Pseudomanifolds
نویسندگان
چکیده
منابع مشابه
Lower Bounds for Cubical Pseudomanifolds
It is verified that the number of vertices in a d-dimensional cubical pseudomanifold is at least 2d+1. Using Adin’s cubical h-vector, it is established that the cubical Generalized Lower Bound Conjecture (GLBC) holds for all 4-spheres, as well as some special cases of the cubical GLBC in higher dimensions.
متن کاملLower bound theorem for normal pseudomanifolds
In this paper we present a self-contained combinatorial proof of the lower bound theorem for normal pseudomanifolds, including a treatment of the cases of equality in this theorem. We also discuss McMullen and Walkup’s generalised lower bound conjecture for triangulated spheres in the context of the lower bound theorem. Finally, we pose a new lower bound conjecture for non-simply connected tria...
متن کاملUpper and lower bounds for numerical radii of block shifts
For an n-by-n complex matrix A in a block form with the (possibly) nonzero blocks only on the diagonal above the main one, we consider two other matrices whose nonzero entries are along the diagonal above the main one and consist of the norms or minimum moduli of the diagonal blocks of A. In this paper, we obtain two inequalities relating the numeical radii of these matrices and also determine ...
متن کاملSome lower bounds for the $L$-intersection number of graphs
For a set of non-negative integers~$L$, the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots, l}$ to vertices $v$, such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$. The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete & Computational Geometry
سال: 2011
ISSN: 0179-5376,1432-0444
DOI: 10.1007/s00454-011-9329-9